Introduction:
A PiN diode is a diode with a wide, lightly doped 'near' intrinsic semiconductor region between a p-type semiconductor and an n-type semiconductor regions. The p-type and n-type regions are typically heavily doped because they are used for ohmic contacts.
The wide intrinsic region is in contrast to an ordinary PN diode. The wide intrinsic region makes the PIN diode an inferior rectifier (the normal function of a diode), but it makes the PIN diode suitable for attenuators, fast switches, photodetectors, and high voltage power electronics application
OPERATION:
A PIN diode obeys the standard diode equation for low frequency signals. At higher frequencies, the diode looks like an almost perfect (very linear, even for large signals) resistor. There is a lot of stored charge in the intrinsic region. At low frequencies, the charge can be removed and the diode turns off. At higher frequencies, there is not enough time to remove the charge, so the diode never turns off. The PIN diode has a poor reverse recovery time.
The high-frequency resistance is inversely proportional to the DC bias current through the diode. A PIN diode, suitably biased, therefore acts as a variable resistor. This high-frequency resistance may vary over a wide range (from 0.1 ohm to 10 kΩ in some cases[1]; the useful range is smaller, though).
The wide intrinsic region also means the diode will have a low capacitance when reverse biased.
In a PIN diode, the depletion region exists almost completely within the intrinsic region. This depletion region is much larger than in a PN diode, and almost constant-size, independent of the reverse bias applied to the diode. This increases the volume where electron-hole pairs can be generated by an incident photon. Some photodetector devices, such as PIN photodiodes and phototransistors (in which the base-collector junction is a PIN diode), use a PIN junction in their construction.
The diode design has some design tradeoffs. Increasing the dimensions of the intrinsic region (and its stored charge) allows the diode to look like a resistor at a lower frequencies. It adversely affects the time needed to turn off the diode and its shunt capacitance. PIN diodes will be tailored for a particular use.
APPLICATIONS:
PIN diodes are useful as RF switches, attenuators, and photodetectors.
No comments:
Post a Comment